
Cooking for Geeks60

kilogram of cast iron 1°C versus a kilogram of alu-
minum, because of how the materials are structured
at the atomic level. How do common metals in pans
compare in terms of specific heat?

Cast iron has a lower specific heat than aluminum.
It takes roughly twice as much energy (897 J/
kg*K versus 450 J/kg*K) to heat the same amount
of aluminum up to the same temperature, and
because energy doesn’t just disappear (first law
of thermodynamics), this means that a kilogram
of aluminum will actually give off more heat than
a kilogram of cast iron as it cools (e.g., when you
drop that big steak onto the pan’s surface).

It’s not just the thermal conductivity or specific
heat of the metal that matters, though; the mass
of the pan is critical. I always sear my steak in
my cast iron pan. It weighs 7.7 lbs / 3.5 kg, as
opposed to 3.3 lbs / 1.5 kg in the case of my alu-
minum pan, so it has more heat energy to give
off. When searing, pick a pan that has the highest
value of specific heat * mass, so that once it’s hot,
it won’t drop in temperature as much when you
add the food.

There are a few other factors
you should consider when pick-
ing a pan. Cast iron and alu-
minum react with acids, so
pans made of those materials
shouldn’t be used for simmer-
ing tomatoes or other acidic
items. Nonstick pans shouldn’t
be heated above 500°F / 260°C.
And then there are cases where
the pan isn’t the primary source
of heat for cooking: when boil-

ing or steaming, the water provides the heat
transfer, so the material used in making the pan
isn’t important. Likewise, if you’re using an ultra-
high-BTU burner (like the 60,000-BTU burners
used in wok cooking), the pan isn’t a heat sink so
heat capacity isn’t important.

What’s the deal with cladded metals? You know,
pans with copper or aluminum cores, encased in
stainless steel or some other metal? (Clad = to
encase with a covering.) These types of pans are a
solution to two goals: avoiding hot spots by eve-
ning out heat quickly (by using aluminum or cop-
per), and using a nonreactive surface (typically
stainless steel, although nonstick coatings also
work) so that the food doesn’t chemically react
with the pan.

Finally, if you’re buying a pan and can’t decide
between two otherwise identical choices, go for
the one that has oven-safe handles. Avoid wood,
and make sure the handles aren’t so big that they
prevent popping the pan in the oven.

Copper: 385
Cast Iron: 450

Stainless Steel: 500

Specific Heat (J/kg*K)
(heat energy required to raise
1 kg of material by 1 kelvin)

(This is why it sucks to spill
molten sucrose on your skin.)

(Ditto for steam)

Aluminum: 897

Air: 1012
Molten Sugar (Sucrose): 1244

Steam: 2080

400 600 800 1000 1200 2000

Kitchen Equipment 61

In
iti

al
izi

ng
 th

e K
itc

he
n

Measuring cups and scales
In addition to the common items used for measuring (e.g., measuring cups and
spoons), I strongly recommend purchasing a kitchen scale. If you will be following
any of the recipes from this book using hydrocolloids or other food additives (see
Chapter 6), it is practically required. You might not use it every day (or even every
week), but there is no substitute for it when you need one.

You will obtain better accuracy when measuring by weight. Dry ingredients such as
flour can become compressed, so the amount of flour in “1 cup” can vary quite a bit
due to the amount of pressure present when it’s packed (see the sidebar “Weight
Versus Volume: The Case for Weight”). Also, it is easier to precisely measure weight
than volume. Because much of cooking is about controlling chemical reactions
based on the ratio of ingredients (say, flour and water), changes in the ratio will
alter your results, especially in baking. Weighing ingredients also allows you to load
ingredients serially: add 390 grams of flour, hit tare; 300 grams of water, hit tare; 7
grams of salt, hit tare; 2 grams of yeast, mix, let rest for 20 hours, and you’ve got no-
knead bread. (See the interview with Martin Lersch on page 224 in Chapter 5 for
baking instructions.)

When choosing a scale, look for the following features:

• A digital display, showing weights in grams and ounces, that has a tare func-
tion for zeroing out weight

• A flat surface on which you can place a bowl or dish (avoid scales that have
built-in bowls)

• A scale that is capable of measuring up to at least 5 lbs or 2.2 kg in 0.05 oz or
1g increments

If you plan on following any “molecular gastronomy / modernist cuisine” recipes that use
chemicals, you’ll need to pick up a high-precision scale that measures in increments of 0.1
gram or finer. I use an American Weigh Scale AMW-100.

Spoons & co.
Few things symbolize cooking more than a spoon, and for good reason: stirring, tasting,
adjusting the seasoning, stirring some more, and tasting again would be virtually impossi-
ble without a good spoon! I prefer the wooden variety. In an age of technology and modern
plastics, there’s just something comforting about a wooden spoon. Look for one that has a
straight end, as opposed to a traditional spoon shape, because the straight edge is useful
for scraping the inside corners and bottom of a pan to release fond. When it comes to clean-
ing them, I run mine through the dishwasher. True, it’s bad for the wood, but I find it easier
and don’t mind buying a new one every few years.

You can pour ingredients
directly into a mixing bowl by
weight, skipping the need for

measuring cups.

Use a high-precision scale
when working with food

additives.

Cooking for Geeks62

How much of a difference does it really make to
weigh your flour? To find out, I asked friends to
measure out 1 cup of all-purpose flour and then
weigh it. Ten cups later, the gram weights were
in: 124, 125, 131, 133, 135, 156, 156, 158, 162, and
163. That’s a whopping 31% difference between
the lowest and highest measurements.

How much flour is in a cup? Depends
on whether you pack it in tight (on
left: 1 cup at 156 grams, then sifted)

or keep it loose (on right: 1 cup at
125 grams, then sifted).

Even if you could
perfectly measure
the same weight
with every cup,
you still might end
up using a differ-
ent amount than
what a recipe calls
for. The average
weight of the 10
samples above is
144 grams. The
United States
Department of

Agriculture defines 1 cup of flour as 125 grams;
Wolfram|Alpha (http://www.wolframalpha.com)
gives 137 grams. And the side of the package of
flour in my kitchen? 120 grams.

The upshot? You’ll get better results by weighing
ingredients, especially when baking. A cup might
not be a cup, but 100 grams will always be 100
grams. Clearly, weight is the way to go.

But what about wet measurements—measurements
of things that don’t compress? While you’re not
going to see the same variability, you can still end
up with a fair amount of skew just based on the
accuracy of the measuring device. The following
image shows what four different methods for mea-
suring 1 cup of liquid yielded.

 212 grams 225 grams 232 grams 237 grams
 Tablespoon Liquid measuring cup Dry measuring cup Digital scale
 (16 tablespoons = 1 cup)

Weight Versus Volume: The Case for Weight

Figure 3-2. The Console window in an application

The draw() Method
The draw() method is where the drawing of the application happens, but it can be much
more than that. The draw() method is the heartbeat of your application; any behavior
defined in this method will be called at the number of times per second specified as the
frame rate of your application.

A simple example of a draw() method can be seen in Example 3-3.

Example 3-3. methods.pde

void draw() {
 println("hi");
}

Assuming that the frame rate of your application is 30 times a second, the message
"hi" will print to the Console window of the Processing IDE 30 times a second. That’s
not very exciting, is it? But it demonstrates what the draw() method is: the definition
of the behavior of any processing application at a regular interval determined by the
frame rate, after the application runs the setup() method.

Example 3-4 is a slightly more interesting example dissected.

60 | Chapter 3:ಗProcessing

Example 3-4. expanding.pde

int x = 0;

void setup() {
 size(300, 300);
}

void draw() {
 // make x a little bit bigger
 x += 2;
 // draw a circle using x as the height and width of the circle
 ellipse(150, 150, x, x);
 // if x is too big, we can't see it in our window, so put it back
 // to 0 and start over
 if(x > 300) {
 x = 0;
 }
}

First things first—you’re making an int variable, x, to store a value:

int x = 0;

Since x isn’t inside a method, it’s going to exist throughout the entire application. That
is, when you set it to 20 in the draw() method, then the next time the draw() method
is called the value of x is still going to be 20. This is important because it lets you
gradually animate the value of x.

This refers to the idea of scope; if that concept isn’t ringing any bells for
you, review Chapter 2.

To set up the application using the setup() method, simply set the size of the window
so that it’s big enough. Nothing too interesting there, so you can skip right to the
draw() method:

void draw() {

Each time you call draw(), you’re going to make this number bigger by 2. You could
also write x = x+2;, but the following is simpler and does the same thing:

 x += 2;

Now that you’ve made x a little bit bigger, you can use it to draw a circle into the
window:

ellipse(150, 150, x, x);

The Basics of a Processing Application | 61

Look ahead in this chapter to the section “The Basics of Drawing with
Processing” on page 63 for more information about the ellipse()
method.

If the value of x is too high, the circle will be drawn too large for it to show up correctly
in your window (300 pixels); you’ll want to reset x to 0 so that the circles placed in the
window begin growing again in size:

 if(x > 300) {
 x = 0;
 }
}

In Figure 3-3, you can see the animation about halfway through its cycle of incrementing
the x value and drawing gradually larger and larger circles.

Figure 3-3. The demo application drawing circles

The draw() method is important because the Processing application uses it to set up a
lot of the interaction with the application. For instance, the mousePressed() method
and the mouseMove() methods that are discussed in the section “Capturing Simple User
Interaction” on page 70 will not work without a draw() method being defined. You
can imagine that the draw() method tells the application that you want to listen to
whatever happens with the application as each frame is drawn. Even if nothing is be-
tween the brackets of the draw() method, generally you should always define a
draw() method.

62 | Chapter 3:ಗProcessing

THE TOOLS 11

Processing is a fun language to play with
because you can make interactive graphics
very quickly. It’s also a simple introduction to

Java for beginning programmers. If you’re a Java pro-
grammer already, you can include Java directly in your
Processing programs. Processing is expandable through
code libraries. You’ll be using two of the Processing code
libraries frequently in this book: the serial library and the
networking library.

For more on the syntax of Processing, see the language
reference guide at www.processing.org. To learn more
about programming in Processing, check out Processing:
A Programming Handbook for Visual Designers and
Artists, by Casey Reas and Ben Fry (MIT Press), the
creators of Processing, or their shorter book, Getting
Started with Processing (O'Reilly). Or, read Daniel
Shiffman's excellent introduction, Learning Processing
(Morgan Kaufmann). There are dozens of other Processing
books on the market, so find one whose style you like best.

IRU��LQW�P\&RXQWHU� ����P\&RXQWHU�� ����P\&RXQWHU����̂

��SULQWOQ�P\&RXQWHU���

`

Here’s a typical for-next loop.
Try this in a sketch of its own (to
start a new sketch, select New from
Processing’s File menu).

�

Every Processing program has two main routines, setup()
and draw()� setup() happens once at the beginning of the
program. It’s where you set all your initial conditions, like
the size of the applet window, initial states for variables,
and so forth. draw() is the main loop of the program. It
repeats continuously until you close the applet window.

In order to use variables in Processing, you have to declare
the variable’s data type. In the preceding program, the
variables redValue, greenValue, and blueValue are all
float types, meaning that they’re floating decimal-point
numbers. Other common variable types you’ll use are ints

(integers), booleans (true or false values), Strings of text,
and bytes.

Like C, Java, and many other languages, Processing uses
C-style syntax. All functions have a data type, just like
variables (and many of them are the void type, meaning
that they don’t return any values). All lines end with a
semicolon, and all blocks of code are wrapped in curly
braces. Conditional statements (if-then statements),
for-next loops, and comments all use the C syntax as
well. The preceding code illustrates all of these except the
for-next loop.

Remote-Access Applications
One of the most effective debugging tools you’ll use
when making the projects in this book is a command-line
remote-access program, which gives you access to the
command-line interface of a remote computer. If you’ve
never used a command-line interface before, you’ll find it
a bit awkward at first, but you get used to it pretty quickly.
This tool is especially important when you need to log into
a web server, because you’ll need the command line to
work with PHP scripts that will be used in this book.

Most web hosting providers are based on Linux, BSD,
Solaris, or some other Unix-like operating system. So,
when you need to do some work on your web server, you
may need to make a command-line connection to your
web server.

NOTE: If you already know how to create PHP and HTML
documents and upload them to your web server, you
can skip ahead to the “PHP” section.

BASIC users: If you’ve never used a C-style for-next loop, it can seem forbidding. What this bit

of code does is establish a variable called myCounter. As long as a number is less than or equal

to 10, it executes the instructions in the curly braces. myCounter++ tells the program to add

one to myCounter each time through the loop. The equivalent BASIC code is:

IRU�P\&RXQWHU� ���WR���

��3ULQW�P\&RXQWHU

QH[W

12 MAKING THINGS TALK

Figure 1-3
The main PuTTY window.

Although this is the most direct way to work with PHP,
some people prefer to work more indirectly, by writing text
files on their local computers and uploading them to the
remote computer. Depending on how restrictive your web
hosting service is, this may be your only option (however,
there are many inexpensive hosting companies that offer
full command-line access). Even if you prefer to work this
way, there are times in this book when the command line
is your only option, so it’s worth getting to know a little bit
about it now.

On Windows computers, there are a few remote access
programs available, but the one that you’ll use here is
called PuTTY. You can download it from www.puttyssh.org.
Download the Windows-style installer and run it. On Mac
OS X and Linux, you can use OpenSSH, which is included
with both operating systems, and can be run in the
Terminal program with the command ssh.

Before you can run OpenSSH, you’ll need to launch a
terminal emulation program, which gives you access to
your Linux or Mac OS X command line. On Mac OS X,
the program is called Terminal, and you can find it in the
Utilities subdirectory of the Applications directory. On Linux,
look for a program called xterm, rxvt, Terminal, or Konsole.

NOTE: ssh is a more modern cousin of a longtime Unix remote-

access program called telnet. ssh is more secure; it scrambles

all data sent from one computer to another before sending it, so

it can’t be snooped on en route. telnet sends all data from one

computer to another with no encryption. You should use ssh to

connect from one machine to another whenever you can. Where

telnet is used in this book, it’s because it’s the only tool that will

do what’s needed for the examples in question. Think of telnet as

an old friend: maybe he's not the coolest guy on the block, maybe

he’s a bit of a gossip, but he's stood by you forever, and you know

you can trust him to do the job when everyone else lets you down.

X

Mac OS X and Linux
Open your terminal program. These Terminal
applications give you a plain-text window with a
greeting like this:

/DVW�ORJLQ��:HG�)HE�������������RQ�WW\S�

&RPSXWHU1DPH�a�XVHUQDPH�

Type ssh username@myhost.com at the command
line to connect to your web host. Replace username
and myhost.com with your username and host
address.

Windows
On Windows, you’ll need to start up PuTTY (see Figure
1-3). To get started, type myhost.com (your web
host’s name) in the Host Name field, choose the SSH
protocol, and then click Open.

The computer will try to connect to the remote host,
asking for your password when it connects. Type it
(you won’t see what you type), followed by the Enter key.

Making the SSH Connection

THE TOOLS 13

Once you’ve connected to the remote web server, you
should see something like this:

/DVW�ORJLQ��:HG�)HE������������������IURP���������������

>XVHULG#P\KRVW�a@��

Now you’re at the command prompt of your web host’s
computer, and any command you give will be executed on
that computer. Start off by learning what directory you’re
in. To do this, type:

SZG

which stands for “print working directory.” It asks the
computer to list the name and pathname of the directory
in which you’re currently working. (You’ll see that many
Unix commands are very terse, so you have to type less.
The downside of this is that it makes them harder to
remember.) The server will respond with a directory path,
such as:

�KRPH�LJRH

This is the home directory for your account. On many
web servers, this directory contains a subdirectory called
public_html or www, which is where your web files belong.
Files that you place in your home directory (that is, outside
of www or public_html) can’t be seen by web visitors.

NOTE: You should check with your web host to learn how the files

and directories in your home directory are set up.

To find out what files are in a given directory, use the list
(ls) command, like so:

OV�²O��

NOTE: The dot is shorthand for “the current working directory.”

Similarly, a double dot is shorthand for the directory (the parent

directory) that contains the current directory.

The -l means “list long.” You’ll get a response like this:

WRWDO���

GUZ[U�[U�[�����LJRH�XVHUV������$SU����������SXEOLFBKWPO

GUZ[U�[U�[�����LJRH�XVHUV������1RY����������VKDUH

This is a list of all the files and subdirectories of the
current working directories, as well as their attributes. The
first column lists who’s got permissions to do what (read,
modify, or execute/run a file). The second lists how many
links there are to that file elsewhere on the system; most
of the time, this is not something you’ll have much need
for. The third column tells you who owns it, and the fourth
tells you the group (a collection of users) to which the file
belongs. The fifth lists its size, and the sixth lists the date it
was last modified. The final column lists the filename.

In a Unix environment, all files whose names begin with a
dot are invisible. Some files, like access-control files that
you’ll see later in the book, need to be invisible. You can get
a list of all the files, including the invisible ones, using the
–a modifier for ls, this way:

OV��OD

To move around from one directory to another, there’s a
“change directory” command, cd. To get into the public_
html directory, for example, type:

FG�SXEOLFBKWPO

To go back up one level in the directory structure, type:

FG���

To return to your home directory, use the ~ symbol, which
is shorthand for your home directory:

FG�a

If you type cd on a line by itself, it also takes you to your
home directory.

If you want to go into a subdirectory of a directory,
for example the cgi-bin directory inside the public_html
directory, you’d type cd public_html/cgi-bin. You can type
the absolute path from the main directory of the server
(called the root) by placing a / at the beginning of the file’s
pathname. Any other file pathname is called a relative path.

To make a new directory, type:

PNGLU�GLUHFWRU\QDPH

Using the Command Line

